Course Code	19ME3601	Year	III	Semester	Π	
Course Category:	Program Core	Branch	ME	Course Type	Theory	
Credits:	4	L - T - P	3 - 1 - 0	Prerequisites:	Nil	
Continuous Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100	

HEAT TRANSFER

Cours	Course Outcomes				
Upon s	successful completion of the course, the student will be able to				
CO1	CO1 Describe modes of heat transfer				
CO2	D2 Formulate one dimensional steady and transient conduction heat transfer I				
	problems and explain concept of fins				
CO3	Explain concepts on forced convective heat transfer, significance of non	L2			
	dimensional numbers and free convection heat transfer				
CO4	Solve problems based on boiling, condensation, LMTD and NTU methods.	L3			
CO5	Describe basic concepts of radiation heat transfer including both black body	L2			
	radiation and gray body radiation.				

Course Articulation Matrix:

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)							&						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	3				1							1	1
CO2	2	3				2							3	3
CO3	2	3				2							3	3
CO4	2	3				2							3	3
CO5	2	3				2							3	3

	Course Content	Mapped CO s
UNIT-1	Modes and mechanisms of heat transfer – Basic laws of heat transfer – General discussion about applications of heat transfer. CONDUCTION HEAT TRANSFER: Fourier rate equation – General heat conduction equation in Cartesian, Cylindrical and Spherical coordinates.	CO1
UNIT-2	ONE DIMENSIONAL STEADY STATE CONDUCTION HEAT TRANSFER: steady, unsteady and periodic heat transfer – Initial and boundary conditions. Homogeneous slabs, hollow cylinders and spheres – overall heat transfer coefficient – electrical analogy – Critical radius of insulation - Variable Thermal conductivity – systems with and without heat generation. EXTENDED SURFACE (FINS) HEAT TRANSFER – Long Fin, Fin with insulated tip and Short Fin, Application to error measurement of Temperature. ONE DIMENSIONAL TRANSIENT CONDUCTION HEAT TRANSFER: Systems with negligible internal resistance – Significance of Biot and Fourier Numbers Chart solutions of transient conduction systems.	CO2

UNIT-3	CONVECTIVE HEAT TRANSFER: Classification of systems based on	CO3
	causation of flow, condition of flow, configuration of flow and medium of	
	flow - Dimensional analysis as a tool for experimental investigation -	
	Buckingham Pi Theorem and method, application for developing semi -	
	empirical non- dimensional correlation for convection heat transfer -	
	Significance of non-dimensional numbers - Concepts of Continuity,	
	Momentum and Energy Equations.	
	FORCED CONVECTION: EXTERNAL FLOWS: Concepts about	
	hydrodynamic and thermal boundary layer and use of empirical correlations	
	for convective heat transfer Flat plates and Cylinders. FREE	
	CONVECTION: Development of Hydrodynamic and thermal boundary layer	
	along a vertical plate – Use of empirical relations for Vertical plates.	
UNIT-4	HEAT TRANSFER WITH PHASE CHANGE: BOILING – Pool boiling –	CO4
	Regimes Calculations on Nucleate boiling, Critical Heat flux and Film	
	boiling. CONDENSATION: Film wise and drop wise condensation -	
	Nusselt's Theory of Condensation on a vertical plate - Film condensation on	
	vertical and horizontal cylinders using empirical correlations.	
	HEAT EXCHANGERS: Classification of heat exchangers - overall heat	
	transfer Coefficient and fouling factor - Concepts of LMTD and NTU	
	methods - Problems using LMTD and NTU methods.	
UNIT-5	RADIATION HEAT TRANSFER: Emission characteristics and laws of	CO5
	black-body radiation - Irradiation - total and monochromatic quantities -	
	laws of Planck, Wien, Kirchoff, Lambert, Stefan and Boltzmann.	
	Heat exchange between two black bodies - concepts of shape factor -	
	Emissivity - heat exchange between grey bodies - radiation shields -	
	electrical analogy for radiation networks.	

	Learning Resources
Text	1.Heat and Mass Transfer by Y.A Cengel, A J Ghajar, Mc Graw Hill education, 2011.
Books:	2. Heat transfer, by J.P.Holman, TMH publications, 2008.
	3. Heat and Mass Transfer, by Sachdeva, New age International.
Reference	1.Engineering Heat & Mass transfer by Mahesh.M.Rathor ,University science press
Books:	,2006
	2. Heat Transfer - A Basic Approach, by N.Ozisik , MC Grawhill, 1985
	3. Heat transfer, by S.P.Sukhatme, Orient longman Pvt. Ltd. 2005
	4.Introduction to Heat Transfer, by Incropera and Dewitt, Wiley Publishers, 2001
	5. Heat Transfer, by D.S. Kumar, SK. Kataria & sons,2009.
E-	https://nptel.ac.in/courses/112/108/112108149/
Resources	
& other	https://nptel.ac.in/courses/112/105/112105271/
digital	
Material:	https://nptel.ac.in/courses/103/103/103103031/#

Data book to be allowed in examination:

C.P.Kothandaraman & S. Subramanyam, Heat and Mass Transfer Data Book, New Age

International Publishers – Sixth edition.